Beta oscillation dynamics in extrastriate cortex after removal of primary visual cortex.
نویسندگان
چکیده
The local field potential (LFP) in visual cortex is typically characterized by the following spectral pattern: before the onset of a visual stimulus, low-frequency oscillations (beta, 12-20 Hz) dominate, whereas during the presentation of a stimulus these oscillations diminish and are replaced by fluctuations at higher frequencies (gamma, >30 Hz). The origin of beta oscillations in vivo remains unclear, as is the basis of their suppression during visual stimulation. Here we investigate the contribution of ascending input from primary visual cortex (V1) to beta oscillation dynamics in extrastriate visual area V4 of behaving monkeys. We recorded LFP activity in V4 before and after resecting a portion of V1. After the surgery, the visually induced gamma LFP activity in the lesion projection zone of V4 was markedly reduced, consistent with previously reported spiking responses (Schmid et al., 2013). In the beta LFP range, the lesion had minimal effect on the normal pattern of spontaneous oscillations. However, the lesion led to a surprising and permanent reversal of the normal beta suppression during visual stimulation, with visual stimuli eliciting beta magnitude increases up to 50%, particularly in response to moving stimuli. This reversed beta activity pattern was specific to stimulus locations affected by the V1 lesion. Our results shed light on the mechanisms of beta activity in extrastriate visual cortex: The preserved spontaneous oscillations point to a generation mechanism independent of the geniculostriate pathway, whereas the positive beta responses support the contribution of visual information to V4 via direct thalamo-extrastriate projections.
منابع مشابه
Dynamics of alaninaminotransferase activity in subcellular fractions of different areas of brain cortex and hypothalamus in postnatal ontogenesis under protein-free feeding regime and after its withdrawal
Total and specific activities of alaninaminotransferase (Al-AT) were determined in general tissues, mitochondrial and cytosol fractions of visual, orbital, motor, limbic areas of brain cortex and hypothalamus of three-month old and one-year old rats under 10-20 days and 30 days protein deprivation and under recovery of normal food regime during the same terms. It was found out that Al-AT activi...
متن کاملDynamics of alaninaminotransferase activity in subcellular fractions of different areas of brain cortex and hypothalamus in postnatal ontogenesis under protein-free feeding regime and after its withdrawal
Total and specific activities of alaninaminotransferase (Al-AT) were determined in general tissues, mitochondrial and cytosol fractions of visual, orbital, motor, limbic areas of brain cortex and hypothalamus of three-month old and one-year old rats under 10-20 days and 30 days protein deprivation and under recovery of normal food regime during the same terms. It was found out that Al-AT activi...
متن کاملEarly and late consolidation and reconsolidation of memory in the prelimbic cortex
Rats can learn to forage among olfactory cues to associate one with reward in only 3 massed trials. The learning is achieved in less than 10 min and results in a memory trace lasting at least 1wk week. To study the neuro-anatomical circuits involved in the memory formation we used immunoreactivity to the immediate early gene c-fos as a marker for neuronal activity induced by the learning. The p...
متن کاملEffects of visual deprivation on epileptic activity in mature rat visual cortex
Effects of visual deprivation on the induction of epileptiform activity were studied in layer II/III of mature rat primary visual cortex. Field potentials were evoked by stimulation of layer IV in slices from control and dark-reared (OR) rats. Picrotoxin (PTX)-induced epileptic activity was characterized by spontaneous and evoked epileptic field potentials (EFPs). The results showed that OR s...
متن کاملTopographic organization of human visual areas in the absence of input from primary cortex.
Recently, there has been evidence for considerable plasticity in primary sensory areas of adult cortex. In this study, we asked to what extent topographical maps in human extrastriate areas reorganize after damage to a portion of primary visual (striate) cortex, V1. Functional magnetic resonance imaging signals were measured in a subject (G.Y.) with a large calcarine lesion that includes most o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 34 35 شماره
صفحات -
تاریخ انتشار 2014